SRE

When docker compose stopped being magic

There was a time, not so long ago, when docker-compose up felt like performing a magic trick. You’d scribble a few arcane incantations into a YAML file and, poof, your entire development stack would spring to life. The database, the cache, your API, the frontend… all humming along obediently on localhost. Docker Compose wasn’t just a tool; it was the trusty Swiss Army knife in every developer’s pocket, the reliable friend who always had your back.

Until it didn’t.

Our breakup wasn’t a single, dramatic event. It was a slow fade, the kind of awkward drifting apart that happens when one friend grows and the other… well, the other is perfectly happy staying exactly where they are. It began with small annoyances, then grew into full-blown arguments. We eventually realized we were spending more time trying to fix our relationship with YAML than actually building things.

So, with a heavy heart and a sigh of relief, we finally said goodbye.

The cracks begin to show

As our team and infrastructure matured, our reliable friend started showing some deeply annoying habits. The magic tricks became frustratingly predictable failures.

  • Our services started giving each other the silent treatment. The networking between containers became as fragile and unpredictable as a Wi-Fi connection on a cross-country train. One moment they were chatting happily, the next they wouldn’t be caught dead in the same virtual network.
  • It was worse at keeping secrets than a gossip columnist. The lack of native, secure secret handling was, to put it mildly, a joke. We were practically writing passwords on sticky notes and hoping for the best.
  • It developed a severe case of multiple personality disorder. The same docker-compose.yml file would behave like a well-mannered gentleman on one developer’s machine, a rebellious teenager in staging, and a complete, raving lunatic in production. Consistency was not its strong suit.
  • The phrase “It works on my machine” became a ritualistic chant. We’d repeat it, hoping to appease the demo gods, but they are a fickle bunch and rarely listened. We needed reliability, not superstition.

We had to face the truth. Our old friend just couldn’t keep up.

Moving on to greener pastures

The final straw was the realization that we had become full-time YAML therapists. It was time to stop fixing and start building again. We didn’t just dump Compose; we replaced it, piece by piece, with tools that were actually designed for the world we live in now.

For real infrastructure, we chose real code

For our production and staging environments, we needed a serious, long-term commitment. We found it in the AWS Cloud Development Kit (CDK). Instead of vaguely describing our needs in YAML and hoping for the best, we started declaring our infrastructure with the full power and grace of TypeScript.

We went from a hopeful plea like this:

# docker-compose.yml
services:
  api:
    build: .
    ports:
      - "8080:8080"
    depends_on:
      - database
  database:
    image: "postgres:14-alpine"

To a confident, explicit declaration like this:

// lib/api-stack.ts
import * as cdk from 'aws-cdk-lib';
import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as ecs_patterns from 'aws-cdk-lib/aws-ecs-patterns';

// ... inside your Stack class
const vpc = /* your existing VPC */;
const cluster = new ecs.Cluster(this, 'ApiCluster', { vpc });

// Create a load-balanced Fargate service and make it public
new ecs_patterns.ApplicationLoadBalancedFargateService(this, 'ApiService', {
  cluster: cluster,
  cpu: 256,
  memoryLimitMiB: 512,
  desiredCount: 2, // Let's have some redundancy
  taskImageOptions: {
    image: ecs.ContainerImage.fromRegistry("your-org/your-awesome-api"),
    containerPort: 8080,
  },
  publicLoadBalancer: true,
});

It’s reusable, it’s testable, and it’s cloud-native by default. No more crossed fingers.

For local development, we found a better roommate

Onboarding new developers had become a nightmare of outdated README files and environment-specific quirks. For local development, we needed something that just worked, every time, on every machine. We found our perfect new roommate in Dev Containers.

Now, we ship a pre-configured development environment right inside the repository. A developer opens the project in VS Code, it spins up the container, and they’re ready to go.

Here’s the simple recipe in .devcontainer/devcontainer.json:

{
  "name": "Node.js & PostgreSQL",
  "dockerComposeFile": "docker-compose.yml", // Yes, we still use it here, but just for this!
  "service": "app",
  "workspaceFolder": "/workspace",

  // Forward the ports you need
  "forwardPorts": [3000, 5432],

  // Run commands after the container is created
  "postCreateCommand": "npm install",

  // Add VS Code extensions
  "extensions": [
    "dbaeumer.vscode-eslint",
    "esbenp.prettier-vscode"
  ]
}

It’s fast, it’s reproducible, and our onboarding docs have been reduced to: “1. Install Docker. 2. Open in VS Code.”

To speak every Cloud language, we hired a translator

As our ambitions grew, we needed to manage resources across different cloud providers without learning a new dialect for each one. Crossplane became our universal translator. It lets us manage our infrastructure, whether it’s on AWS, GCP, or Azure, using the language we already speak fluently: the Kubernetes API.

Want a managed database in AWS? You don’t write Terraform. You write a Kubernetes manifest.

# rds-instance.yaml
apiVersion: database.aws.upbound.io/v1beta1
kind: RDSInstance
metadata:
  name: my-production-db
spec:
  forProvider:
    region: eu-west-1
    instanceClass: db.t3.small
    masterUsername: admin
    allocatedStorage: 20
    engine: postgres
    engineVersion: "14.5"
    skipFinalSnapshot: true
    # Reference to a secret for the password
    masterPasswordSecretRef:
      namespace: crossplane-system
      name: my-db-password
      key: password
  providerConfigRef:
    name: aws-provider-config

It’s declarative, auditable, and fits perfectly into a GitOps workflow.

For the creative grind, we got a better workflow

The constant cycle of code, build, push, deploy, test, repeat for our microservices was soul-crushing. Docker Compose never did this well. We needed something that could keep up with our creative flow. Skaffold gave us the instant gratification we craved.

One command, skaffold dev, and suddenly we had:

  • Live code syncing to our development cluster.
  • Automatic container rebuilds and redeployments when files change.
  • A unified configuration for both development and production pipelines.

No more editing three different files and praying. Just code.

The slow fade was inevitable

Docker Compose was a fantastic tool for a simpler time. It was perfect when our team was small, our application was a monolith, and “production” was just a slightly more powerful laptop.

But the world of software development has moved on. We now live in an era of distributed systems, cloud-native architecture, and relentless automation. We didn’t just stop using Docker Compose. We outgrew it. And we replaced it with tools that weren’t just built for the present, but are ready for the future.

If your Kubernetes YAML looks Like hieroglyphics, this post is for you

It all started, as most tech disasters do, with a seductive whisper. “Just describe your infrastructure with YAML,” Kubernetes cooed. “It’ll be easy,” it said. And we, like fools in a love story, believed it.

At first, it was a beautiful romance. A few files, a handful of lines. It was elegant. It was declarative. It was… manageable. But entropy, the nosy neighbor of every DevOps team, had other plans. Our neat little garden of YAML files soon mutated into a sprawling, untamed jungle of configuration.

We had 12 microservices jostling for position, spread across 4 distinct environments, each with its own personality quirks and dark secrets. Before we knew it, we weren’t writing infrastructure anymore; we were co-authoring a Byzantine epic in a language seemingly designed by bureaucrats with a fetish for whitespace.

The question that broke the camel’s back

The day of reckoning didn’t arrive with a server explosion or a database crash. It came with a question. A question that landed in our team’s Slack channel with the subtlety of a dropped anvil, courtesy of a junior engineer who hadn’t yet learned to fear the YAML gods.

“Hey, why does our staging pod have a different CPU limit than prod?”

Silence. A deep, heavy, digital silence. The kind of silence that screams, “Nobody has a clue.”

What followed was an archaeological dig into the fossil record of our own repository. We unearthed layers of abstractions we had so cleverly built, peeling them back one by one. The trail led us through a hellish labyrinth:

  1. We started at deployment.yaml, the supposed source of all truth.
  2. That led us to values.yaml, the theoretical source of all truth.
  3. From there, we spelunked into values.staging.yaml, where truth began to feel… relative.
  4. We stumbled upon a dusty patch-cpu-emergency.yaml, a fossil from a long-forgotten crisis.
  5. Then we navigated the dark forest of custom/kustomize/base/deployment-overlay.yaml.
  6. And finally, we reached the Rosetta Stone of our chaos: an argocd-app-of-apps.yaml.

The revelation was as horrifying as finding a pineapple on a pizza: we had declared the same damn value six times, in three different formats, using two tools that secretly despised each other. We weren’t managing the configuration. We were performing a strange, elaborate ritual and hoping the servers would be pleased.

That’s when we knew. This wasn’t a configuration problem. It was an existential crisis. We were, without a doubt, deep in YAML Hell.

The tools that promised heaven and delivered purgatory

Let’s talk about the “friends” who were supposed to help. These tools promised to be our saviors, but without discipline, they just dug our hole deeper.

Helm, the chaotic magician

Helm is like a powerful but slightly drunk magician. When it works, it pulls a rabbit out of a hat. When it doesn’t, it sets the hat on fire, and the rabbit runs off with your wallet.

The Promise: Templating! Variables! A whole ecosystem of charts!

The Reality: Debugging becomes a form of self-torment that involves piping helm template into grep and praying. You end up with conditionals inside your templates that look like this:

image:
  repository: {{ .Values.image.repository | quote }}
  tag: {{ .Values.image.tag | default .Chart.AppVersion }}
  pullPolicy: {{ .Values.image.pullPolicy | default "IfNotPresent" }}

This looks innocent enough. But then someone forgets to pass image.tag for a specific environment, and you silently deploy :latest to production on a Friday afternoon. Beautiful.

Kustomize the master of patches

Kustomize is the “sensible” one. It’s built into kubectl. It promises clean, layered configurations. It’s like organizing your Tupperware drawer with labels.

The Promise: A clean base and tidy overlays for each environment.

The Reality: Your patch files quickly become a mystery box. You see this in your kustomization.yaml:

patchesStrategicMerge:
  - increase-replica-count.yaml
  - add-resource-limits.yaml
  - disable-service-monitor.yaml

Where are these files? What do they change? Why does disable-service-monitor.yaml only apply to the dev environment? Good luck, detective. You’ll need it.

ArgoCD, the all-seeing eye (that sometimes blinks)

GitOps is the dream. Your Git repo is the single source of truth. No more clicking around in a UI. ArgoCD or Flux will make it so.

The Promise: Declarative, automated sync from Git to cluster. Rollbacks are just a git revert away.

The Reality: If your Git repo is a dumpster fire of conflicting YAML, ArgoCD will happily, dutifully, and relentlessly sync that dumpster fire to production. It won’t stop you. One bad merge, and you’ve automated a catastrophe.

Our escape from YAML hell was a five-step sanity plan

We knew we couldn’t burn it all down. We had to tame the beast. So, we gathered the team, drew a line in the sand, and created five commandments for configuration sanity.

1. We built a sane repo structure

The first step was to stop the guesswork. We enforced a simple, predictable layout for every single service.

├── base/
│   ├── deployment.yaml
│   ├── service.yaml
│   └── configmap.yaml
└── overlays/
    ├── dev/
    │   ├── kustomization.yaml
    │   └── values.yaml
    ├── staging/
    │   ├── kustomization.yaml
    │   └── values.yaml
    └── prod/
        ├── kustomization.yaml
        └── values.yaml

This simple change eliminated 80% of the “wait, which file do I edit?” conversations.

2. One source of truth for values

This was a sacred vow. Each environment gets one values.yaml file. That’s it. We purged the heretics:

  • values-prod-final.v2.override.yaml
  • backup-of-values.yaml
  • donotdelete-temp-config.yaml

If a value wasn’t in the designated values.yaml for that environment, it didn’t exist. Period.

3. We stopped mixing Helm and Kustomize

You have to pick a side. We made a rule: if a service requires complex templating logic, use Helm. If it primarily needs simple overlays (like changing replica counts or image tags per environment), use Kustomize. Using both on the same service is like trying to write a sentence in two languages at once. It’s a recipe for suffering.

4. We render everything before deploying

Trust, but verify. We added a mandatory step in our CI pipeline to render the final YAML before it ever touches the cluster.

# For Helm + Kustomize setups
helm template . --values overlays/prod/values.yaml | \
kustomize build | \
kubeval -

This simple script does three magical things:

  • It validates that the output is syntactically correct YAML.
  • It lets us see exactly what is about to be applied.
  • It has completely eliminated the “well, that’s not what I expected” class of production incidents.

5. We built a simple config CLI

To make the right way the easy way, we built a small internal CLI tool. Now, instead of navigating the YAML jungle, an engineer simply runs:

$ ops-cli config generate --app=user-service --env=prod

This tool:

  1. Pulls the correct base templates and overlay values.
  2. Renders the final, glorious YAML.
  3. Validates it against our policies.
  4. Shows the developer a diff of what will change in the cluster.
  5. Saves lives and prevents hair loss.

YAML is now a tool again, not a trap.

The afterlife is peaceful

YAML didn’t ruin our lives. We did, by refusing to treat it with the respect it demands. Templating gives you incredible power, but with great power comes great responsibility… and redundancy, and confusion, and pull requests with 10,000 lines of whitespace changes. Now, we treat our YAML like we treat our application code. We lint it. We test it. We render it. And most importantly, we’ve built a system that makes it difficult to do the wrong thing. It’s the institutional equivalent of putting childproof locks on the kitchen cabinets. A determined toddler could probably still get to the cleaning supplies, but it would require a conscious, frustrating effort. Our system doesn’t make us smarter; it just makes our inevitable moments of human fallibility less catastrophic. It’s the guardrail on the scenic mountain road of configuration. You can still drive off the cliff, but you have to really mean it. Our infrastructure is no longer a hieroglyphic. It’s just… configuration. And the resulting boredom is a beautiful thing.

What if Kubernetes was the wrong tool for almost everyone?

It was 11 PM on a Tuesday, and for the third time that week, we were on an emergency call. Not because our product had a critical bug, but because a routine deployment had, once again, mysteriously broken the internal DNS. Three of our sharpest engineers weren’t creating value; they were offering sacrifices to the capricious god of Istio, hoping it might bless our pods with connectivity.

As I stared at the sprawling diagram we’d made just to add a single, simple microservice, a heretical thought wormed its way into my brain: When did our job stop being about building software and become about… well, serving Kubernetes?

A rumor we couldn’t ignore

The next morning, amidst our collective YAML-induced hangover, someone dropped a screenshot into our team’s Slack channel. It was from some tiny, no-name startup, claiming they were getting 8x the performance of a standard Kubernetes stack at one-tenth of the cost.

The team’s reaction was a collective, cynical laugh. “Sure,” our lead SRE typed, “and my home server can out-render Pixar.” It was obviously marketing fluff. Propaganda. The post itself was deleted within an hour, but the screenshot had already gone viral. It was absurd, unbelievable, and we all knew it was nonsense.

But the idea, like a catchy, terrible pop song, got stuck in our heads.

Let’s just prove it’s impossible

That Friday, we decided to do it. We’d run a small, contained experiment, mostly for the bragging rights of publicly debunking the ridiculous claim. The plan was simple: take one of our standard, moderately complex services and see what it would take to run it on a simpler stack.

Our service, an image processor, wasn’t a behemoth, but its YAML file had grown… organically. Like a colony of particularly stubborn mold. It had sidecars, persistent volume claims, readiness probes, and enough annotations to qualify as a short novel.

Here’s a sanitized glimpse of the beast we were trying to tame:

# apiVersion: apps/v1
# kind: Deployment
# metadata:
#   name: image-processor-svc
#   labels:
#     app: image-processor
# spec:
#   replicas: 3
#   selector:
#     matchLabels:
#       app: image-processor
#   template:
#     metadata:
#       labels:
#         app: image-processor
#     spec:
#       containers:
#       - name: processor
#         image: our-repo/image-processor:v1.2.4
#         ports:
#         - containerPort: 8080
#         resources:
#           requests:
#             memory: "512Mi"
#             cpu: "250m"
#           limits:
#             memory: "1024Mi"
#             cpu: "500m"
#         readinessProbe:
#           httpGet:
#             path: /healthz
#             port: 8080
#           initialDelaySeconds: 5
#           periodSeconds: 10
#       - name: metrics-sidecar
#         image: prom/statsd-exporter:v0.22.0
#         args:
#         - "--statsd.mapping-config=/etc/statsd/mapper.yml"
#         ports:
#         - name: metrics
#           containerPort: 9102
#         volumeMounts:
#         - name: config-volume
#           mountPath: /etc/statsd
#   # ...and so on, for another 150 lines.

We figured it would take us all afternoon just to untangle it.

The uncomfortable silence of success

We set up a competing stack using Firecracker MicroVMs, essentially tiny, lightning-fast virtual machines. The goal was to run the same container, but without the entire Kubernetes universe orbiting around it.

By 3 PM, we had our first results. And that’s when the room went quiet. It was the kind of uncomfortable silence you get when you realize the joke you’ve been telling for months is actually on you.

The numbers weren’t just holding up; they were embarrassing us. We stared at the Grafana dashboard, waiting for the figures to make sense. They didn’t. Our projected monthly cloud bill for this single service didn’t just shrink; it plummeted.

We had spent years building a complex, expensive, and fragile machine, all to solve a problem that, it turned out, could be handled with a much, much simpler approach.

Our quest for sane infrastructure

That weekend experiment turned into a full-blown obsession. Inspired, we started building our own internal escape hatch. We cobbled together a tool that we jokingly called the “SQL-ifier.” The premise was simple and, to a Kubernetes purist, utterly profane: what if you could manage infrastructure with simple, readable rules instead of YAML incantations?

Instead of a 200-line YAML file for an autoscaler, what if you could just write this?

-- This is our internal, SQL-like syntax for managing MicroVMs.
-- It's not a public standard (yet!).

-- Rule: If CPU usage on the frontend service is over 80% for 3 minutes,
-- add two more instances, but never exceed 20 total.
ON high_cpu(>80%) FOR 3m
IF service.name = 'image-processor-svc'
DO SCALE service.name TO instances + 2
LIMIT 20;

-- Rule: If we see more than 10 critical payment errors in 1 minute,
-- immediately revert to the last stable version.
ON log_error(level='critical', service='payment-gateway') > 10 FOR 1m
DO ROLLBACK service 'payment-gateway' TO previous_stable;

It was declarative, readable, and, most importantly, it could be understood by a human being without needing a certification.

How did we all end up here?

This journey forced us to ask a bigger question. Why did we, and thousands of other smart teams, willingly chain ourselves to this complexity?

The answer is surprisingly human. We bought an 18-wheeler truck to do our weekly grocery shopping.

Sure, a giant truck can carry milk and eggs. But you spend most of your time finding a place to park it, paying for diesel, getting a special license to drive it, and explaining to your neighbors why you just flattened their mailbox. Kubernetes was built for Google-scale problems. Most of us run businesses that need the reliability of a Toyota Camry, not a fleet of space shuttles. We adopted the tool because everyone else did, mistaking its complexity for sophistication.

Is your infrastructure serving you?

This whole experience led us to create a simple “mirror test.” If you’re wondering if you’re in the same boat, ask your team these questions:

  1. Do you dread upgrading your cluster more than you dread a root canal?
  2. Is a significant portion of your engineering time spent on “infra-babysitting” instead of building product features?
  3. Could you confidently explain your service mesh configuration to a new hire without a whiteboard and a two-hour meeting?

If you answered “yes” to two or more, you might not have an infrastructure problem. You might have a Kubernetes problem.

This isn’t a manifesto to uninstall kubectl tomorrow. Some organizations genuinely operate at a scale where Kubernetes is not just useful, but necessary. This is just a friendly nudge. A reminder to look up from your YAML files once in a while and ask: is this tool still serving me, or have I started serving it?

Choosing your message queue AWS SQS or GCP Pub/Sub

In the world of modern software, applications are rarely monolithic islands. Instead, they are bustling cities of interconnected services, each performing a specific job. For this city to function smoothly, its inhabitants, microservices, functions, and components need a reliable way to communicate without being directly tethered to one another. This is where message brokers come in, acting as the city’s postal service, ensuring that messages are delivered efficiently and reliably.

Two of the most prominent cloud-based postal services are Amazon Web Services’ Simple Queue Service (SQS) and Google Cloud’s Pub/Sub. Both are exceptional at what they do, but they operate on different philosophies. Understanding their unique characteristics is crucial for any cloud architect or DevOps engineer aiming to build robust, scalable, and event-driven systems. This guide will explore their differences to help you choose the right service for your application’s needs.

A quick look at our contenders

Before we examine the details, let’s get a general feel for each service.

AWS SQS is the seasoned veteran of message queuing. Think of it as a highly organized system of mailboxes. A service writes a letter (a message) and places it into a specific mailbox (a queue). The recipient service then comes to that mailbox and picks up its mail when it has the capacity to process it. It’s a straightforward, incredibly reliable system that has been battle-tested for years.

GCP Pub/Sub operates more like a global newspaper subscription. A publisher (your service) doesn’t send a message to a specific recipient. Instead, it publishes a message to a “topic,” like a news flash for the “user-signup” channel. Any service that has subscribed to that topic instantly receives a copy of the message. It’s designed for broad, real-time distribution of information on a global scale.

The delivery dilemma Push versus Pull

The most fundamental difference between SQS and Pub/Sub lies in how messages are delivered. This is often referred to as the “push vs. pull” model.

The pull model, which is SQS’s native approach, is like checking your P.O. box. The consumer application is responsible for periodically asking the queue, “Is there any mail for me?” This gives the consumer complete control over the rate of consumption. If it’s overwhelmed with work, it can slow down its requests or stop asking for new messages altogether. This is ideal for batch processing or any workload where you need to manage the processing pace carefully.

The push model, where Pub/Sub shines, is akin to home mail delivery. When a message is published, Pub/Sub actively “pushes” it to all subscribed endpoints, such as a serverless function or a webhook. The recipient doesn’t have to ask; the message just arrives. This is incredibly efficient for real-time notifications and event-driven workflows where immediate reaction is key. While Pub/Sub also supports a pull model, its architecture is optimized for push-based delivery.

Comparing key features

Let’s break down how these two services stack up in a few critical areas.

Message ordering

Sometimes, the sequence of events is just as important as the events themselves. For these cases, AWS SQS offers a specific FIFO (First-In, First-Out) queue type. This works exactly like a single-file line at a bank; the first person to get in line is the first one to be served. It provides a strict guarantee that messages will be processed in the exact order they were sent, which is critical for tasks like processing financial transactions or application logs.

GCP Pub/Sub, in contrast, does not have a dedicated FIFO queue type. Instead, it achieves partial ordering through the use of ordering keys. You can assign a key to messages (for example, a userId), and Pub/Sub will ensure that all messages with that specific key are delivered in order. However, it doesn’t guarantee order between different keys. To reuse the analogy, it’s less like a single line and more like a deli with separate ticket numbers for the butcher and the bakery. It keeps orders straight within each department, but not across the entire store.

Scale and reach

This is where their architectural differences become clear. SQS is a regional service. It’s incredibly scalable and resilient, but its scope is confined to a single AWS region.

Pub/Sub is inherently global. You publish a message once, and it can be delivered to subscribers in any region around the world with low latency. If your application has a global user base and you need to propagate events worldwide, Pub/Sub has a distinct advantage.

Message size and retention

Think of SQS as being for postcards and letters. It supports messages up to 256 KB. It can hold onto these messages for up to 14 days, giving your consumers plenty of time to process them.

Pub/Sub, on the other hand, can handle larger packages, with a maximum message size of 10 MB. However, its standard retention period is shorter, at 7 days.

Special delivery options

SQS has a native feature called Delay Queues. This allows you to postpone the delivery of a new message for up to 15 minutes. It’s like writing a post-dated check; the message sits in the queue but is invisible to consumers until the timer expires. This is useful for scheduling tasks without a complex scheduling service. Pub/Sub does not offer a similar built-in feature.

When to choose AWS SQS

SQS is your go-to choice when you need a dependable, orderly mailroom for your application. It excels in scenarios where:

  • Strict ordering is non-negotiable. For task sequencing or financial ledgers, SQS FIFO is the gold standard.
  • You need to control the pace of consumption. The pull model is perfect for decoupling a fast producer from a slower consumer or for batch processing jobs.
  • Task scheduling is required. The native delay queue feature is a simple yet powerful tool.
  • Your application’s architecture is primarily contained within a single AWS region.

When to choose GCP Pub/Sub

Pub/Sub is the right tool when you’re building a global broadcasting system or a highly reactive, event-driven platform. Consider it when:

  • You need to fan-out messages to many consumers. Pub/Sub’s topic-and-subscription model is designed for this.
  • Global distribution with low latency is a priority. Its global nature is a massive benefit for distributed systems.
  • You are sending large messages. The 10 MB limit offers much more flexibility than SQS.
  • A push-based model fits your architecture. It integrates seamlessly with serverless functions for instant, event-triggered execution.

A final word

So, after all this technical deliberation, which digital courier should you entrust with your precious data packets? The one that meticulously forms a single, orderly queue, or the one that shouts your message through a global megaphone to anyone who will listen?

The truth is, there’s no single “best” service. There’s only the one whose particular brand of crazy best matches your application’s personality. Is your app a stickler for the rules, demanding every event be processed in perfect sequence, lest it have a digital panic attack? Then the quiet, predictable, and slightly obsessive SQS is your soulmate. Or is your app more of a drama queen, needing to announce every minor update to the entire world, immediately? Then the boisterous, globe-trotting Pub/Sub is probably already sliding into your DMs.

Ultimately, the best way to choose is to put them to the test. Think of it as a job interview. Give them both a trial run with your actual workload and see which one handles the pressure with more grace, or at least breaks in a more interesting, less catastrophic way. Go on, do it for science. And for the future sanity of your on-call engineer.

Integrate End-to-End testing for robust cloud native pipelines

We expect daily life to run smoothly. Our cars start instantly, our coffee brews perfectly, and streaming services play without a hitch. Similarly, today’s digital users have zero patience for software hiccups. To meet these expectations, many businesses now build cloud-native applications, highly scalable, flexible, and agile software. However, while our construction materials have changed, the need for sturdy, reliable software has only grown stronger. This is where End-to-End (E2E) testing comes in, verifying entire user workflows to ensure every software component seamlessly works together.

In this article, you’ll see practical ways to embed E2E tests effectively into your Continuous Integration and Continuous Delivery (CI/CD) pipelines, turning complexity into clarity.

Navigating the challenges of cloud-native testing

Traditional software testing was like assembling a static puzzle on a stable surface. Cloud-native testing, however, feels more like putting together a puzzle on a moving vehicle, every piece constantly shifts.

Complex microservice coordination

Cloud-native apps are often built with multiple microservices, each operating independently. Think of these as specialized workers collaborating on a complex project. If one worker stumbles, the whole project suffers. Microservices require precise coordination, making it tricky to identify and fix issues quickly.

Short-lived and shifting environments

Containers and Kubernetes create ephemeral, constantly changing environments. They’re like pop-up stores appearing briefly and disappearing overnight. Managing testing in these environments means handling dynamic URLs and quickly changing configurations, a challenge comparable to guiding customers to a food truck that relocates every day.

The constant quest for good test data

In dynamic environments, consistently managing accurate test data can feel impossible. It’s akin to a chef who finds their pantry randomly restocked every few minutes. Having fresh and relevant ingredients consistently ready becomes a monumental challenge.

Integrating quality directly into your CI/CD pipeline

Incorporating E2E tests into CI/CD is like embedding precision checkpoints directly onto an assembly line, catching problems as soon as they appear rather than after the entire product is built.

Early detection saves the day

Embedding E2E tests acts like multiple smoke detectors installed throughout a building rather than just one centrally located. Issues get pinpointed rapidly, preventing small problems from becoming massive headaches. Tools like Datadog Synthetic or Cypress allow parallel execution, speeding up the testing process dramatically.

Stopping errors before users see them

Failed E2E tests automatically halt deployments, ensuring faulty code doesn’t reach customers. Imagine a vigilant gatekeeper preventing defective products from leaving the factory, this is exactly how integrated E2E tests protect software quality.

Rapid recovery and reduced downtime

Frequent and targeted testing significantly reduces Mean Time To Repair (MTTR). If a recipe tastes off, testing each ingredient individually makes it easy to identify the problematic one swiftly.

Testing advanced deployment methods

E2E tests validate sophisticated deployment strategies like canary or blue-green deployments. They’re comparable to taste-testing new recipes with select diners before serving them to a broader audience.

Strategies for reliable E2E tests in cloud environments

Conducting E2E tests in the cloud is like performing a sensitive experiment outdoors where weather conditions (network latency, traffic spikes) constantly change.

Fighting flakiness in dynamic conditions

Cloud environments often introduce unpredictable elements, network latency, resource contention, and transient service issues. It’s similar to trying to have a detailed conversation in a loud environment; messages can easily be missed.

Robust test locators

Build your tests to find UI elements using multiple identifiers. If the primary path is blocked, alternate paths ensure your tests remain reliable. Think of it like knowing multiple routes home in case one road gets closed.

Intelligent automatic retries

Implement automatic retries for tests that intermittently fail due to transient issues. Just like retrying a phone call after a bad connection, automated retries ensure temporary problems don’t falsely indicate major faults.

Stability matters for operations

Flaky tests create unnecessary alerts, causing teams to lose confidence in their testing suite. SREs need reliable signals, like a fire alarm that only triggers for genuine fires, not burned toast.

Real-Life integration, an example of a QuickCart application

Imagine assembling a complex Lego model, verifying each piece as it’s added.

E-Commerce application scenario

Consider “QuickCart,” a hypothetical cloud-native e-commerce application with services for product catalog, user accounts, shopping cart, and order processing.

Critical user journey

An essential E2E scenario: a user logs in, searches products, adds one to the cart, and proceeds toward checkout. This represents a common user experience path.

CI/CD pipeline workflow

When a developer updates the Shopping Cart service:

  1. The CI/CD pipeline automatically builds the service.
  2. The E2E test suite runs the crucial “Add to Cart” test before deploying to staging.
  3. Test results dictate the next steps:
    • Pass: Change promoted to staging.
    • Fail: Deployment halted; team immediately notified.

This ensures a broken cart never reaches customers.

Choosing the right tools and automation

Selecting testing tools is like equipping a kitchen: the right tools significantly ease the task.

Popular E2E frameworks

Tools such as Cypress, Selenium, Playwright, and Datadog Synthetics each bring unique strengths to the table, making it easier to choose one that fits your project’s specific needs. Cypress excels with developer experience, allowing quick test creation. Selenium is unbeatable for extensive cross-browser testing. Playwright offers rapid execution ideal for fast-paced environments. Datadog Synthetics integrates seamlessly into monitoring systems, swiftly identifying potential problems.

Smooth integration with CI/CD

These tools work well with CI/CD platforms like Jenkins, GitLab CI, GitHub Actions, or Azure DevOps, orchestrating your automated tests efficiently.

Configurable and adaptable

Adjusting tests between environments (dev, staging, prod) is as simple as tweaking a base recipe, with minimal effort, and maximum adaptability.

Enhanced observability and detailed reporting

Observability and detailed reporting are the navigational instruments of your testing universe. Tools like Prometheus, Grafana, Datadog, or New Relic highlight test failures and offer valuable context through logs, metrics, and traces. Effective observability reduces downtime and stress, transforming complex debugging from tedious guesswork into targeted, effective troubleshooting.

The path to continuous confidence

Embedding E2E tests into your cloud-native CI/CD pipeline is like learning to cook with cast iron pans. Initial skepticism and maintenance worries soon give way to reliably delicious outcomes. Quick feedback, fewer surprises, and less midnight stress transform software cycles into satisfying routines.

Great software doesn’t happen overnight, it’s carefully seasoned and consistently refined. Embrace these strategies, and software quality becomes not just attainable but deliciously predictable.

Podman the secure Daemonless Docker alternative

Podman has emerged as a prominent technology among DevOps professionals, system architects, and infrastructure teams, significantly influencing the way containers are managed and deployed. Podman, standing for “Pod Manager,” introduces a modern, secure, and efficient alternative to traditional container management approaches like Docker. It effectively addresses common challenges related to overhead, security, and scalability, making it a compelling choice for contemporary enterprises.

With the rapid adoption of cloud-native technologies and the widespread embrace of Kubernetes, Podman offers enhanced compatibility and seamless integration within these advanced ecosystems. Its intuitive, user-centric design simplifies workflows, enhances stability, and strengthens overall security, allowing organizations to confidently deploy and manage containers across various environments.

Core differences between Podman and Docker

Daemonless vs Daemon architecture

Docker relies on a centralized daemon, a persistent background service managing containers. The disadvantage here is clear: if this daemon encounters a failure, all containers could simultaneously go down, posing significant operational risks. Podman’s daemonless architecture addresses this problem effectively. Each container is treated as an independent, isolated process, significantly reducing potential points of failure and greatly improving the stability and resilience of containerized applications.

Additionally, Podman simplifies troubleshooting and debugging, as any issues are isolated within individual processes, not impacting an entire network of containers.

Rootless container execution

One notable advantage of Podman is its ability to execute containers without root privileges. Historically, Docker’s default required elevated permissions, increasing the potential risk of security breaches. Podman’s rootless capability enhances security, making it highly suitable for multi-user environments and regulated industries such as finance, healthcare, or government, where compliance with stringent security standards is critical.

This feature significantly simplifies audits, easing administrative efforts and substantially minimizing the potential for security breaches.

Performance and resource efficiency

Podman is designed to optimize resource efficiency. Unlike Docker’s continuously running daemon, Podman utilizes resources only during active container use. This targeted approach makes Podman particularly advantageous for edge computing scenarios, smaller servers, or continuous integration and delivery (CI/CD) pipelines, directly translating into cost savings and improved system performance.

Moreover, Podman supports organizations’ sustainability objectives by reducing unnecessary energy usage, contributing to environmentally conscious IT practices.

Flexible networking with CNI

Podman employs the Container Network Interface (CNI), a standard extensively used in Kubernetes deployments. While CNI might initially require more configuration effort than Docker’s built-in networking, its flexibility significantly eases the transition to Kubernetes-driven environments. This adaptability makes Podman highly valuable for organizations planning to migrate or expand their container orchestration strategies.

Compatibility and seamless transition from Docker

A key advantage of Podman is its robust compatibility with Docker images and command-line tools. Transitioning from Docker to Podman is typically straightforward, requiring minimal adjustments. This compatibility allows DevOps teams to retain familiar workflows and command structures, ensuring minimal disruption during migration.

Moreover, Podman fully supports Dockerfiles, providing a smooth transition path. Here’s a straightforward example demonstrating Dockerfile compatibility with Podman:

FROM alpine:latest

RUN apk update && apk add --no-cache curl

CMD ["curl", "--version"]

Building and running this container in Podman mirrors the Docker experience:

podman build -t myimage .
podman run myimage

This seamless compatibility underscores Podman’s commitment to a user-centric approach, prioritizing ease of transition and ongoing operational productivity.

Enhanced security capabilities

Podman offers additional built-in security enhancements beyond rootless execution. By integrating standard Linux security mechanisms such as SELinux, AppArmor, and seccomp profiles, Podman ensures robust container isolation, safeguarding against common vulnerabilities and exploits. This advanced security model simplifies compliance with rigorous security standards and significantly reduces the complexity of maintaining secure container environments.

These security capabilities also streamline security audits, enabling teams to identify and mitigate potential vulnerabilities proactively and efficiently.

Looking ahead with Podman

As container technology evolves rapidly, staying updated with innovative solutions like Podman is essential for DevOps and system architecture professionals. Podman addresses critical challenges associated with Docker, offering improved security, enhanced performance, and seamless Kubernetes compatibility.

Embracing Podman positions your organization strategically, equipping teams with superior tools for managing container workloads securely and efficiently. In the dynamic landscape of modern DevOps, adopting forward-thinking technologies such as Podman is key to sustained operational success and long-term growth.

Podman is more than an alternative—it’s the next logical step in the evolution of container technology, bringing greater reliability, security, and efficiency to your organization’s operations.

Why enterprise DevOps initiatives fail and how to fix them

Getting DevOps right in large companies is tricky. It’s been around for nearly two decades, from developers wanting deployment control. It gained traction around 2011-2015, boosted by Gartner, SAFe, and AWS’s rise, pushing CIOs to learn from agile startups.

Despite this history, many DevOps initiatives stumble. Why? Often, the approach misses fundamental truths about making DevOps work in complex enterprises with multi-cloud setups, legacy systems, and pressure for faster results. Let’s explore common pitfalls and how to get back on track.

Thinking DevOps is just another IT project

This is crucial. DevOps isn’t just new tools or org charts; it’s a cultural shift. It’s about Dev, Ops, Sec, and the business working together smoothly, focused on customer value, agility, and stability.

Treating it like a typical project is like fixing a building’s crumbling foundation by painting the walls, you ignore the deep, structural changes needed. CIOs might focus narrowly on IT implementation, missing the vital cultural shift. Overlooking connections to customer value, security, scaling, and governance is easy but detrimental. Siloing DevOps leads to slower cycles and business disconnects.

How to Fix It: Ensure shared understanding of DevOps/Agile principles. Run workshops for Dev and Ops to map the value stream and find bottlenecks. Forge a shared vision balancing innovation speed and operational stability, the core DevOps tension.

Rushing continuous delivery without solid operations

The allure of CI/CD is strong, but pushing continuous deployment everywhere without robust operations is like building a race car without good brakes or steering, you might crash.

Not every app needs constant updates, nor do users always want them. Does the business grasp the cost of rigorous automated testing required for safe, frequent deployments? Do teams have the operational muscle: solid security, deep observability, mature AIOps, reliable rollbacks? Too often, we see teams compromise quality for speed.

The massive CrowdStrike outage is a stark reminder: pushing changes fast without sufficient safeguards is risky. To keep evolving… without breaking things, we need to test everything. Remember benchmarks: only 18% achieve elite performance (on-demand deploys, <5% failure, <1hr recovery); high performers deploy daily/weekly (<10% failure, <1 day recovery).

How to Fix It: Use a risk-based approach per application. For frequent deployments, demand rigorous testing, deep observability (using SRE principles like SLOs), canary releases, and clear Error Budgets.

Neglecting user and developer experiences

Focusing solely on automation pipelines forgets the humans involved: end-users and developers.

Feature flags, for instance, are often just used as on/off switches. They’re versatile tools for safer rollouts, A/B testing, and resilience, missing this potential is a loss.

Another pitfall: overloading developers by shifting too much infrastructure, testing, and security work “left” without proper support. This creates cognitive overload and kills productivity, imposing a “developer tax”, it’s unrealistic to expect developers to master everything.

How to Fix It: Discuss how DevOps practices impact people. Is the user experience good? Is the developer experience smooth, or are engineers drowning? Define clear roles. Consider a Platform Engineering team to provide self-service tools that reduce developer burden.

Letting tool choices run wild without standards

Empowering teams to choose tools is good, but complete freedom leads to chaos, like builders using incompatible materials. It creates technical debt and fragility.

Platform Engineering helps by providing reusable, self-service components (CI/CD, observability, etc.), creating “paved roads” with embedded standards. Most orgs now have platform teams, boosting productivity and quality. Focusing only on tools without solid architecture causes issues. “Automation can show quick wins… but poor architecture leads to operational headaches”.

How to Fix It: Balance team autonomy with clear standards via Platform Engineering or strong architectural guidance. Define tool adoption processes. Foster collaboration between DevOps, platform, architecture, and delivery teams on shared capabilities.

Expecting teams to magically handle risk

Shifting security “left” doesn’t automatically mean risks are managed effectively. Do teams have the time, expertise, and tools for proactive mitigation? Many orgs lack sufficient security support for all teams.

Thinking security is just managing vulnerability lists is reactive. True DevSecOps builds security in. Data security is also often overlooked, with severe consequences. AI code generation adds another layer requiring rigorous testing.

How to Fix It: Don’t just assume teams handle risk. Require risk mitigation and tech debt on roadmaps. Implement automated security testing, regular security reviews, and threat modeling. Define release management with risk checkpoints. Leverage SRE practices like production readiness reviews (PRRs).

The CIO staying Hands-Off until there’s a crisis

A fundamental mistake CIOs make is fully delegating DevOps and only getting involved during crises. Because DevOps often feels “in the weeds,” it tends to be pushed down the hierarchy. But DevOps is strategic, it’s about delivering value faster and more reliably.

Given DevOps’ evolution, expect varied interpretations. As a CIO, be proactively involved. Shape the culture, engage regularly (not just during crises), champion investments (platforms, training, SRE), and ensure alignment with business needs and risk tolerance.

How to Fix It: Engage early and consistently. Champion the culture shift. Ask about value delivery, risk management, and developer productivity. Sponsor platform/SRE teams. Ensure business alignment. Your active leadership is crucial.

Avoiding these pitfalls isn’t magic, DevOps is a continuous journey. But understanding these traps and focusing on culture, solid operations, user/developer experience, sensible standards, proactive risk management, and engaged leadership significantly boosts your chances of building a DevOps capability that delivers real business value.

Observability with eBPF technology

Running today’s software systems can feel a bit like trying to understand a bustling city from a helicopter high above. You see the general traffic flow, but figuring out why a specific street is jammed or where a particular delivery truck is going is tough. We have tools, of course, lots of them. But often, getting the detailed information we need means adding bulky agents or changing our applications, which can slow things down or create new problems. It’s a classic headache for anyone building or running software, whether you’re in DevOps, SRE, development, or architecture.

Wouldn’t it be nice if we had a way to get a closer look, right down at the street level, without actually disturbing the traffic? That’s essentially what eBPF lets us do. It’s a technology that’s been quietly brewing within the Linux kernel, and now it’s stepping into the spotlight, offering a new way to observe what’s happening inside our systems.

What makes eBPF special for watching systems

So, what’s the magic behind eBPF? Think of the Linux kernel as the fundamental operating system layer, the very foundation upon which all your applications run. It manages everything: network traffic, file access, process scheduling, you name it. Traditionally, peering deep inside the kernel was tricky, often requiring complex kernel module programming or using tools that could impact performance.

eBPF changes the game. It stands for Extended Berkeley Packet Filter, but it has grown far beyond just filtering network packets. It’s more like a tiny, super-efficient, and safe virtual machine right inside the kernel. We can write small programs that hook into specific kernel events, like when a network packet arrives, a file is opened, or a system call is made. When that event happens, our little eBPF program runs, gathers information, and sends it out for us to see.

Here’s why this is such a breakthrough for observability:

  • Deep Visibility Without the Weight: Because eBPF runs right in the kernel, it sees things with incredible clarity. It can capture detailed system events, network calls, and even hardware metrics. But crucially, it does this without needing heavy agents installed everywhere or requiring you to modify your application code (instrumentation). This low overhead is perfect for today’s complex distributed systems and microservice architectures where performance is key.
  • Seeing Things as They Happen: eBPF lets us tap into a live stream of data. We can track system calls, network flows, or function executions in real-time. This immediacy is fantastic for spotting anomalies or understanding performance issues the moment they arise, not minutes later when the logs finally catch up.
  • Tailor-made Views: You’re not stuck with generic, one-size-fits-all monitoring. Teams can write specific eBPF programs (often called probes or scripts) to look for exactly what matters to them. Need to understand a specific network interaction? Or figure out why a particular function is slow? You can craft an eBPF program for that. This allows plugging visibility gaps left by other tools and lets you integrate the data easily into systems you already use, like Prometheus or Grafana.

Seeing eBPF in action with practical examples

Alright, theory is nice, but where does the rubber meet the road? How are folks using eBPF to make their lives easier?

  • Untangling Distributed Systems: Microservices are great, but tracking a single user request as it bounces between dozens of services can be a nightmare. eBPF can trace these requests across service boundaries, directly observing the network calls and processing times at the kernel level. This helps pinpoint those elusive latency bottlenecks or failures that traditional tracing might miss.
  • Finding Performance Roadblocks: Is an application slow? Is the server overloaded? eBPF can help identify which processes are hogging CPU or memory, which disk operations are taking too long, or even optimize slow database queries by watching the underlying system interactions. It provides granular data to guide performance tuning efforts.
  • Looking Inside Containers and Kubernetes: Containers add another layer of abstraction. eBPF offers a powerful way to see inside containers and understand their interactions with the host kernel and each other, often without needing to install monitoring agents (sidecars) in every single pod. This simplifies observability in complex Kubernetes environments significantly.
  • Boosting Security: Observability isn’t just about performance; it’s also about security. eBPF can act like a security camera at the kernel level. It can detect unusual system calls, unauthorized network connections, or suspicious file access patterns in real-time, providing an early warning system against potential threats.

Who is using this cool technology?

This isn’t just a theoretical tool; major players are already relying on eBPF.

  • Big Tech and SaaS Companies: Giants like Meta and Google use eBPF extensively to monitor their vast fleets of microservices and optimize performance within their massive data centers. They need efficiency and deep visibility, and eBPF delivers.
  • Financial Institutions: The finance world needs speed, reliability, and security. They’re using eBPF for real-time fraud detection by monitoring system behavior and ensuring compliance by having a clear audit trail of system activities.
  • Online Retailers: Imagine the traffic surge during an event like Black Friday. E-commerce platforms leverage eBPF to keep their systems running smoothly under extreme load, quickly identifying and resolving bottlenecks to ensure customers have a good experience.

Where is eBPF headed next?

The journey for eBPF is far from over. We’re seeing exciting developments:

  • Playing Nicer with Others: Integration with standards like OpenTelemetry is making it easier to adopt eBPF. OpenTelemetry aims to standardize how we collect and export telemetry data (metrics, logs, traces), and eBPF fits perfectly into this picture as a powerful data source. This helps create a more unified observability landscape.
  • Beyond Linux: While born in Linux, the core ideas and benefits of eBPF are inspiring similar approaches in other areas. We’re starting to see explorations into using eBPF concepts for networking hardware, IoT devices, and even helping understand the performance of AI applications.

A new lens on systems

So, eBPF is shaping up to be more than just another tool in the toolbox. It offers a fundamentally different approach to understanding our increasingly complex systems. By providing deep, low-impact, real-time visibility right from the kernel, it empowers DevOps teams, SREs, developers, and architects to build, run, and secure modern applications more effectively. It lets us move from guessing to knowing, turning those opaque system internals into something we can finally observe clearly. It’s definitely a technology worth watching and maybe even trying out yourself.

How real-time data transforms Architecture and DevOps

You know, for a long time, Enterprise Architecture, or EA, felt a bit like map-making after the explorers had already come back. People drew intricate diagrams of how things were or how they should be, often locked away in tools only a few knew how to use. It was important work, sure, but sometimes it felt disconnected from the fast-paced world of building and running software, especially in the cloud and DevOps realms where things change by the minute.

But something interesting has been happening. EA is shedding its old skin. It’s moving away from being a static blueprint repository and becoming more like a dynamic, living navigation system for the business. And the fuel for this new system? Data. Lots of it. This shift makes EA incredibly relevant and much more exciting for those of us knee-deep in DevOps, SRE, and Cloud Architecture. Let’s explore how this data-driven approach isn’t just a new coat of paint for EA but a powerful engine for building and operating systems today.

Real-time data is king, so no more stale maps

Think about driving using a paper map printed last year versus using a live GPS app. Which one do you trust when navigating rush hour traffic? It’s the same with system architecture. Decisions based on diagrams updated manually months ago, or worse, on someone’s gut feeling, just don’t cut it anymore.

The new approach insists on using live data. This means tapping directly into the sources of truth through APIs and integrations. We’re talking about pulling information from your cloud provider, your monitoring systems (think Prometheus, Datadog, Dynatrace), your CI/CD pipelines, your configuration management databases (CMDBs), and even your code repositories.

Why is this such a big deal for DevOps and Cloud folks? Because it mirrors exactly what we strive for with observability. We need real-time insights into system health, performance, and dependencies to operate effectively. When EA leverages the same live data streams, it stops being a theoretical exercise and starts reflecting the actual, breathing state of our complex, distributed systems. Imagine architectural diagrams that automatically update when a new service is deployed via your pipeline or that highlight dependencies based on real network traffic observed by your monitoring tools. That’s moving from a stale map to a live GPS.

Turning data noise into strategic signals

Okay, so we hook everything up and get data flowing. Great! But now we risk drowning in it. A flood of metrics and logs isn’t useful on its own; it can just be noise. The real magic happens when we turn that raw data into insights and those insights into action.

This is where smart visualizations and context-aware dashboards come into play. Instead of presenting architects or DevOps teams with a giant spreadsheet of everything, the idea is to show the right information to the right people at the right time. Think dashboards tailored to specific business capabilities, showing not just CPU usage but how application performance impacts user experience or conversion rates. Or tools that use algorithms to automatically detect anomalies or predict potential bottlenecks based on current trends.

There’s even a fascinating concept emerging called a “Digital Twin of an Organization” or DTO. Don’t let the fancy name scare you. Think of it as a sophisticated simulation or model of your systems and processes built on real data. It allows you to ask “what if” questions. What happens if we migrate this database? What’s the impact of doubling traffic to this service? It’s like having a virtual sandbox, informed by reality, to test changes and understand complex interdependencies before touching production. For SREs and architects managing intricate cloud environments, being able to model changes and predict outcomes is incredibly powerful – it helps us navigate complexity and reduce risk.

The automation and AI advantage freeing up brainpower

Now, collecting all this data, analyzing it, and keeping models updated sounds like a ton of work. And it would be if done manually. This is where automation becomes essential.

Much like we use Infrastructure as Code (IaC) tools (like Terraform or Pulumi) to automate infrastructure provisioning or CI/CD pipelines to automate testing and deployment, modern EA relies heavily on automation. Automating data collection from various sources is just the start. We can automate the generation of visualizations, the detection of architectural drift (when the reality no longer matches the intended design), and even basic consistency checks against predefined architectural principles or security standards.

And Artificial Intelligence (AI) is starting to play a role too. AI can help make sense of unstructured data (like text in design documents), identify complex patterns in operational data that humans might miss (hello, AIOps!), and even suggest improvements or refactoring options for system designs.

The goal here isn’t to replace architects or engineers. It’s the same goal as in DevOps automation: to handle the repetitive, time-consuming, and error-prone tasks so that humans can focus their valuable brainpower on the more strategic, creative, and complex challenges. It frees people up to think about higher-level design, innovation, and solving tricky business problems.

Why this matters to you

So, why should you, as a DevOps engineer, SRE, or Cloud Architect, care about these shifts in EA?

Because this data-driven, automated approach bridges the gap that often existed between architecture and operations.

  • Faster, Better Decisions: When architecture is based on the same live data you use for monitoring and troubleshooting, decisions about scaling, resilience, or refactoring become much more informed and timely.
  • Reduced Friction: It breaks down silos. Architects understand the operational reality better, and Ops/Dev teams get clearer guidance rooted in that reality. Collaboration improves naturally.
  • Proactive Problem Solving: By analyzing trends and modeling changes (like with a DTO), you can move from reactive firefighting to proactively identifying and mitigating risks or performance issues.
  • Improved Alignment: It helps ensure that the systems we build and run are truly aligned with business goals, using metrics that matter to the business, not just technical metrics.
  • Efficiency: Automation handles the grunt work, letting you focus on more interesting and impactful problems.

Essentially, this evolution of EA makes the architect’s work more grounded, more dynamic, and more directly supportive of the goals we pursue in DevOps and Cloud environments – building resilient, scalable, and efficient systems that deliver value quickly.

Embracing a smarter architecture

The world of Enterprise Architecture is changing. It’s becoming less about static drawings and rigid governance and more about leveraging real-time data, insightful analytics, and smart automation. It’s becoming a living, breathing part of the technology ecosystem.

For those of us working in DevOps and the Cloud, this is fantastic news. It means EA is speaking our language, using the data we rely on, and adopting the automation principles we champion. It’s becoming a powerful ally in our quest to build and operate better systems. Letting data steer the ship isn’t just a new rule for architects; it’s a smarter way for all of us to navigate the complexities of modern technology.

Keeping your SaaS services safe with AWS WAF

Building and running SaaS applications in the cloud can often feel like throwing a public event. Most guests are welcome, but a few may try to sneak in, cause trouble, or overwhelm the entrance. In the digital world, these guests come in the form of cyber threats like DDoS attacks and malicious bots. Thankfully, AWS gives us a capable bouncer at the door: the AWS Web Application Firewall, or AWS WAF.

This article tries to explain how AWS WAF helps protect cloud-based APIs and applications. Whether you’re a DevOps engineer, an SRE, a developer, or an architect, if your system speaks HTTP, WAF is a strong ally worth having.

Understanding common web threats

When your service becomes publicly available, you’re not just attracting users, you’re also catching the attention of potential attackers. Some are highly skilled, but many rely on automation. Distributed Denial of Service (DDoS) attacks, for instance, use large networks of compromised devices (bots) to flood your systems with traffic. These bots aren’t always destructive; some just probe endpoints or scrape content in preparation for more aggressive steps.

That said, not all bots are harmful. Some, like those from search engines, help index your content and improve your visibility. So, the real trick is telling the good bots from the bad ones, and that’s where AWS WAF becomes valuable.

How AWS WAF works to protect you

AWS WAF gives you control over HTTP and HTTPS traffic to your applications. It integrates with key AWS services such as CloudFront, API Gateway, Application Load Balancer, AppSync, Cognito, App Runner, and Verified Access. Whether you’re using containers or serverless functions, WAF fits right in.

To start, you create a Web Access Control List (Web ACL), define rules within it, and then link it to the application resources you want to guard. Think of the Web ACL as a checkpoint. Every request to your system passes through it for inspection.

Each rule tells WAF what to look for and how to respond. Actions include allowing, blocking, counting, or issuing a CAPTCHA challenge. AWS provides managed rule groups that cover a wide range of known threats and are updated regularly. These rules are efficient and reliable, perfect for a solid baseline. But when you need more tailored protection, custom rules come into play.

Custom rules can screen traffic based on IP addresses, country, header values, and even regex patterns. You can combine these conditions using logic like AND, OR, and NOT. The more advanced the logic, the more WebACL Capacity Units (WCUs) it uses. So, it’s important to find the right balance between protection and performance.

Who owns what in the security workflow

While security is a shared concern, roles help ensure clarity and effectiveness. Security architects typically design the rules and monitor overall protection. Developers translate those rules into code using AWS CDK or Terraform, deploy them, and observe the results.

This separation creates a practical workflow. If something breaks, say, users are suddenly blocked, developers need to debug quickly. This requires full visibility into how WAF is affecting traffic, making good observability a must.

Testing without breaking things

Rolling out new WAF rules in production without testing is risky, like making engine changes while flying a plane. That’s why it’s wise to maintain both development and production WAF environments. Use development to safely experiment with new rules using simulated traffic. Once confident, roll them out to production.

Still, mistakes happen. That’s why you need a clear “break glass” strategy. This might be as simple as reverting a GitHub commit or disabling a rule via your deployment pipeline. What matters most is that developers know exactly how and when to use it.

Making logs useful

AWS WAF supports logging, which can be directed to S3, Kinesis Firehose, or a CloudWatch Log Group. While centralized logging with S3 or Kinesis is powerful, it often comes with the overhead of maintaining data pipelines and managing permissions.

For many teams, using CloudWatch strikes the right balance. Developers can inspect WAF logs directly with familiar tools like Logs Insights. Just remember to set log retention to 7–14 days to manage storage costs efficiently.

Understanding costs and WCU limits

WAF pricing is based on the number of rules, Web ACLs, and the volume of incoming requests. Every rule consumes WCUs, with each Web ACL having a 5,000 WCU limit. AWS-managed rules are performance-optimized and cost-effective, making them an excellent starting point.

Think of WCUs as computational effort: the more complex your rules, the more resources WAF uses to evaluate them. This affects both latency and billing, so plan your configurations with care.

Closing Reflections

Security isn’t about piling on tools, it’s about knowing the risks and using the right measures thoughtfully. AWS WAF is powerful, but its true value comes from how well it’s configured and maintained.

By establishing clear roles, thoroughly testing updates, understanding your logs, and staying mindful of performance and cost, you can keep your SaaS services resilient in the face of evolving cyber threats. And hopefully, sleep a little better at night. 😉